
LOTIC FILE COpy

0SDRL Q14-02021-D

Q14 - Standards Development Plan

Ada Interfaces to X Window System

Analysis and Recommendations

OTiC
E LECTE

N.OV 14.M

Prepared for
Software Technology for Adaptable
Reliable Systems (STARS)
Unisys STARSCenter
Shipboard and Ground Systems Group
Reston, Virginia

Prepared by
Unisys Corporation
Defense Systems
System Development Group
P.O. Box 517, Paoli, PA 19301-0517

Contract No. F19628-88-D-0031
IDWO P.O. 010412

March 20, 1989

VI"ThRMTON 5'TATLKM AW

*A~wwd 'M vd~u pubk 



1 Executive Summary

" This report describes the X Window System and its role in providing portable user interfaces for
the bit-mapped graphics workstation market. It also shows how the Ada community can best take
advantage of X to create portable applications and encourage code reuse. Included is a critique of
a set of Ada bindings to X, and recommendations for a better approach for providing X for Ada
applications.

The X Window System has become the standard window system for the workstation market. The
Ada community can achieve many of its portability goals by leveragirg the work done in the X

Window System. Ada needs an implementation of the Xt toolkit intrinsics, as this is becoming
the standard intrinsics for X toolkits, and needs a single set of user interface objects for consistent
user interfaces among applications. The advances being made in user interface management system
technology can be incorporated into an Ada user interface st~perd to provile additional portability

and reusability. -, . /- ,

... ' 
4t. I-,:

2 Introduction

Two major thrusts of the STARS program, and industry as a whole, are application portability and
reuse of software components. Application portability can be divided into two types of portability;
program portability, and end user portability. Program portability means a program written for one
machine should require little or no modification to run on another machine. Program portability
is a major concern of the Department of Defense (DOD) since the DOD uses a wide variety of
hardware platforms. The move to a single programming language Ada by the DOD has opened
the door to program portability. The second type of portability, end user portability, means a user
should be able to run and interact with the same program on many different machines. The "look
and feel" of a program should not change from host to host. Related to end user portability is
consistent user interfaces among related programs. This is especially important to the STARS SEE
where many software engineering tools from a variety of vendors must be integrated to produce a
usable software development environment.

Studies [Myers 88] have shown that 29% to 88% of an application's code directly involves the user
interface. Porting the user interface becomes a major task in porting an application to a new
host. A common, portable user interface can greatly increase the portability of an application,
aids user portability by keeping the the user interface constant on different hosts, and can improve
cross-application user interface consistency.

A common user interface, usually in the form of subroutine libraries, makes a large body of reusable ,r
code available to the application development effort. User interface subroutines handle the details
of formatting messages to and input from the user, thus an application developer need only be L

concerned with the interface to the user interface subroutines and not the details of handling data LI

to and from the screen.

The intent of this paper is to address the need of STARS for a standard user interface, an issue that
spans the whole computing community. Currently, the C community is addressing the same issue, '/
and Ada can build on their efforts. The X Window System developed at M.I.T. is an established 7 0odes

.' -7"

indo



vehicle for standard user interfaces. This paper will describe the efforts to standardize X, and show
how X supports application portability and reusability. In doing so the paper will show where
Ada can take advantage of this work to fulfill its goals for application portability and software
reusability.

This paper first briefly describes the X Window System, and shows how the layers of X contribute
to portability and reusability. Included in the discussion of the X Window System layers are
user interface management systems (UIMS), some built on top of X. The paper then looks at
the current standardization efforts in organized standards bodies such as ANSI and IEEE, and in
industry consortiums to show the directions X is taking and the opportunities for Ada to utilize
this work. X is not the only window system, and alternative systems are discussed in the paper to
show the strengths and weaknesses of X. Finally, the paper addresses the issue of what direction an
Ada window system should take. The paper evaluates bindings/implementations of X in Ada, and
from the lessons learned maps a strategy for an Ada implementation of an X based user interface
system. The appendix presents design issues in implementing an Xt toolkit in Ada.

3 X Background

The X Window System [Scheifler 86] [OReilly 88] was developed jointly by M.I.T. and Digital
Equipment Corporation (DEC) under Project Athena. The principal designers were Robert Schei-
fler of M.I.T. and Jim Gettys of DEC. The first public release was Version 10 Release 4 in 1986.
In September 1987 a new release, Version 11 Release 1, occurred which was incompatible with the
previous release. In March 1988 Version 11 Release 2 and in October 1988 Version 11 Release 3
were released, and were compatible with previous releases. Future releases, if any, are expected to
be upward compatible. The release consists of source code, documentation, and sample programs.

By making source code available, M.I.T. has encouraged the proliferation of X. Many companies
are now producing X implementations and X based applications. Releasing source, as M.I.T. did,
can often lead to many distinct versions of X and actually prohibit portability, but to avoid this the
X developers formed the X Consortium, consisting of industry and academic members, who define
an official version of X, and control changes to X. A test suite is under development for verifying
compliance with the X Consortium definition of X.

X is a windowing system for bit-mapped graphics displays in a network environment. X can display
to multiple screens and accept input from a keyboard and a pointing device, usually a mouse. X
consists of a server residing on a display device, such as a Sun or DEC workstation, a network
protocol for communicating with application programs (clients) which may run anywhere on the
network. Current implementations of X use TCP/IP and DECnet networks and UNIX domain
sockets. The server manages the screen, allowing multiple applications to use the screen simulta-
neously. The server captures user input and directs the input to the correct application, supports
two-dimensional graphics, and manages shared resources among clients, including windows, cursors,
and fonts, and data structures such as graphics contexts for drawing to the display. To promote
program portability and ease of programming, X uses a window manager to handle screen layout.
A user can suggest screen layout, but the final decision rests with the window manager. An ap-
plication need not be concerned with the characteristics of a particular display device a program
might run on. Window managers are special X applications that are dependent on display device
characteristics, and are shared by all applications on a device.

2



Client Client Client Client

Network

X Server X Server X Server

Figure 1: X Window System Architecture

The mechanism used by the server to pass information to the client is an event queue. Each
application has a queue upon which the server places input to the application. The applications
may also place events on its own queue and on other client queues. The server thus acts as an
interprocess communication (IPC) vehicle, although the messages are limited to strings.

3.1 X Structure

The X Window System consists of several layers:

" Xl protocol

" Xlib

" intrinsics

" toolkits

The lowest layer is the protocol used to communicate between server and client. Above the protocol
is Xlib the programming interface to the protocol. Xlib consists of over two hundred function

calls to perform functions such as drawing to the screen, creating and deleting windows, selecting

fonts and cursors, handling events, and setting and inquiring about window attributes such as

foreground, background, and color. Xlib is the most primitive interface to X, but provides a
sufficient set of functions for fully portable user interfaces. Applications written at the Xlib level

3



Toolkit

Intrinsics

Xlib

Protocol

Figure 2: X Layers

require considerable programming effort since no basic objects such as menus and scrolbars are
available, and thus contributes little to reusability.

The protocol and Xlib are the core of all X Window System implementations. Above the core
several distinct paths exist. This paper looks at two of these paths: the X Toolkit or Xt from
M.I.T., and the Xrlib Toolkit or Xr from Hewlett-Packard (HP). Both implementations consist of a
set of intrinsics for building the higher level user interface components and libraries of components
such as buttons, menus, and scrollbars. In Xt the intrinsics are also the application program
interface to the toolkit. Figure 2 shows the relationship of the layers of X.

Xt is by far the most popular and many vendors, including DEC and HP, have extended Xt in their
own products. The Xr toolkit usage is declining due mostly to the popularity of Xt. Ada bindings
to the Xr toolkit exist, and this paper discusses the strengths and weaknesses of Xr as a result of
working with the Ada bindings to Xr. No public domain Ada bindings to Xt exist at this time
although there is work in progress. A few proprietary Ada bindings to Xt are rumored to exist.

3.2 X Toolkit - Xt

Xt (McCormack 88] (Burleigh 881 is an object-oriented toolkit used to build the higher level user
interface components. The Xt Intrinsics provide primitive classes of objects and mechanisms to
build, manage, and integrate more complex user interface objects. An object providing a user
interface abstraction in Xt is a widget [Swick 88] which consists of an X window, window attributes,
operations, and state information. The intrinsics provide the programmatic interface for both the
widget programmer and the application programmer. The intrinsics provide routines for application
initialization, widget creation and management, event handling, window geometry management,
and resource management. Applications instantiate widgets which axe maintained in a widget tree
and provide functions which are "called back" when an event occurs within a widget. Applications
generally consist of code to instantiate the widget instances for the application via intrinsics function

calls, a set of callback functions for handling widget events, and a call to an intrinsics provided

event dispatch function (an infinite loop pulling events off the client event queue and dispatching

callback functions). Figure 3 shows the relationship among the various X layers and the application

program.

4



Application

Xt Intrinsics

widgets

Xlib

Protocol

Figure 3: Application Program View of Xt

3.3 Xrlib Toolkit - Xr

Xr [HewlettPackard 88] consists of a set of intrinsic functions, a set of extensible field editors, and
a set of dialog boxes. The intrinsics provide functions for building field editors, andling events
associated with field editors and functions for combining field editors into dialog ooxes. The field
editors are the basic building blocks of the user interface. Examples of field editors are scrollbars,
button boxes (radio, pushbutton, check boxes, etc.), text editors for displaying and entering data
including raster images, and titlebars. The field editors handle local events pertinent only to the
field editor. For instance, a text editor for entering data will handle all keystrokes until the text
input is complete and then notify the application that text has been entered and make the text
input available to the application. The dialog boxes are higher level user interface components and
usually encapsulate several field editors needed for a single user interface function. Xr comes with
three dialog boxes:

" a message box for displaying brief messages to the user and a set of buttons for reply

" a menu dialog for building and handling menu operations

" a more general purpose panel dialog which permits the application to group together a com-

plex combination of field editors for displaying and entering data

A panel dialog may have several text editors for entering user data and a row of buttons or check

boxes for selecting options. Xr provides a mechanism for building new field editors which can be

easily integrated into panel dialogs. Figure 4 shows the relationship among the various Xr layers

and the application program.

4 X Layers - Portability and Reusability

This section describes the effect on portability and reusability of each of the layers of X, and includes

a section on UIMS contributions to portability.

5



Application

SField Editors[

IXr Intrinsics

Xlib

Protocol

Figure 4: Application Program View of Xr

4.1 Protocol and Xlib

The protocol and Xlib layers provide the basic necessities for achieving application portability. By
incorporating the user interface into Xlib calls an application's user interface can be easily ported
to different hardware platforms. Because Xlib is so primitive these two layers provide little support
for reusability. Even such basic structures such as menus and scroilbars must be built within the
application. An application program must handle and interpret the individual keystrokes of user
input. Unless a developer makes a conscious effort to separate the user interface componeu, s in his
application the user interface becomes tightly bound to the application code, and, thus, difficult to
reuse and develop consistent user interfaces across applications.

4.2 Intrinsics

The intrinsic layer provides the building blocks for creating reusable user interface components,
where the toolkit layer provides the reusable components. In Xt the widget classes are the reusable
components. These may be directly reusable as in menus and scrollbars or existing widgets may be
modified or extended by using the inheritance mechanism provided in the object oriented approach
of Xt. This method of inheritance is a fundamental concept in promoting reusable code. In Xr,
the field editors and the dialogs are the reusable components. Xr does not have the concept of
subclasses, and building new components from old components requires code modification.

The Xt toolkit provided by M.I.T. does not provide a large set of reusable interface components.
The widget set, Athena widgets (really a sample widget set), provides only some basic building
blocks for more complex widgets. The Athena widget set includes a command button widget, a
scroUbar widget, label widget, and several types of forms and box widgets. An application using
these widgets must do a considerable amount of work to create usable user interface components.
Because of this many vendors have created there own widget sets using the Xt Intrinsics. With
vendors developing their own widgets sets program portability, user portability and user interface
consistency may suffer, thus portable applications on X require a single standard widget set.

The Xr toolkit provides many resuable user interface components with its field editors and dialogs.
In Xr the application may have to handle much of the event handling which can reduce the reusabil-
ity of code, but a mechanism is available for dispatching event handler function to specific windows.

6



Application

UIMS I

Xt Intrinsics
widgets I

Xlib

Protocol

Figure 5: Application Program View of UIMS

The dialogs take advantage of this feature to handle events in various field editors contained in a
panel.

4.3 UIMS

Another approach to user interfaces is user interface management systems or UIMS [Myers 88]
(Lowgren 881. A UIMS attempts to separate the user interface portion of an application from the
application itself. This can help build better and more consistent user interfaces which are less
dependent on the application semantics. To achieve application portability a UIMS must be built
on top of a portable toolkit, otherwise the job of porting an application becomes a job of porting
the UIMS tool. More UIMS systems are now being built upon X. OPEN/Dialogue from Apollo,
TAE Plus from NASA [NASA 88], Serpent from Software Engineering Institute [Institute 88], and
Chiron from University of California Irvine [Young 88] [Durand 89] are built upon X. The latter
two generate user interfaces for Ada.

Using a UIMS introduces new problems into building good user interfaces. Some UIMS tools
are difficult to use; the interface must be specified in a special language in some UIMS. Of great
concern is the restriction in functionality often introduced by a UIMS. Many UIMSs "rarely can be
used to help control the display and manipulation of the real application data objects [Myers 88]."
UIMS technology is a very active research, and new, better products are coming out. With more
experience the technology will mature and provide portable user interface support. Figure 5. shows
the application program relationship to a UIMS built on top of Xt.

5 X Standardization Efforts

The X Window System has become a de facto standard. With the distribution of source code,
a stable well-defined X was necessary, so M.I.T. organized the X Consortium in 1988 to continue
support for X and provide some control over X. Any company or institution interested in contribut-
ing to X may become a membcr. Changes to the official release of X must be approved by the

7



consortium. Currently, a test suite is under development for verifying compliance with the official
X Consortium definition of X.

A group of UNIX vendors formed the Open Software Foundation (OSF) in 1988 to develop a
single UNIX operating system and portable software. One task of OSF was to develop a plan for
portable user environment. In a six month evaluation of existing vendor products, OSF developed
an X Window System based user environment, called Motif[Hinckley 89], defined by combining
HP's Common X Interface and Window Manager, and DEC's X User Interface and User Interface
Language. Also included were the HP/Microsoft Style Guide which includes Presentation Manager
compatibility. This forms the core of the OSF user environment. OSF also identified several UIMSs
for OSF compliant environments:

" Open Dialog from Apollo

" BASE/OPEN from Swedish Telecom

" Generic Window Manager from Groupe Bull

Use of a UIMS is optional in OSF compliant environments. OSF plans to do further research on
Carnegie Mellon's Andrew System, an object oriented user environment ported to work on X.

Sun Microsystems and AT&T agreed to merge their versions of UNIX, and have further agreed
to use the OPEN LOOK Graphical User Interface which defines a user interface "look and feel."
Sun's next generation toolkit View2 is similar to the original SunView, but implemented directly
on Xlib. AT&T's XT+ is based on Xt intrinsics. Both adhere to the OPEN LOOK definition.

In addition to the industry cooperative agreements, formal standardization of X has begun. The
ANSI graphics standards committee X3H3 has a task group X3H3.6 working on a formal standard
for the X protocol. A draft is currently before X3H3 for ballot, and a standard is expected in 1990.
Work should begin shortly on an Xlib standard in X3H3.6. Plans are to start with a C language
binding for Xlib and follow with an Ada binding.

IEEE recently formed a committee P1201 to work on drivability standards and program interface
standards for the upper layers of X. Drivability standards are an attempt to standardize application
program actions for certain user actions, e.g. a standard action for a left mouse button click. OSF
has taken the lead in defining the intrinsics and toolkit standards by offering Motif as the basis for
P1201 work.

The National Institute for Standards and Technology (NIST, formerly NBS) has drafted a Federal
Information Processing Standard (FIPS) for user interfaces. This FIPS is based on X and the Xt
intrinsics,

The industry has embraced X for standard user interfaces, and all standards and cooperative efforts
are Xt based. Clearly, an Xt based window system provides the greatest opportunity for portable
C applications in the workstation environment. Ada applications should be able to capitalize on
the directions provided by the efforts in C. Both the ANSI and IEEE standards bodies plan to offer
Ada standards, and these will be based on functional specifications used in developing C standards

including Xt intrinsics.

8



Model Layer Component

6 Application Application Logic

5 Dialogue UIMS, Window Manager

4 Presentation UIMS, Window Manager

3 Toolkit Toolkit

2 Subroutine Xt Intrinsics

Foundation

1 Data Stream Xlib

Interface

0 Data Stream X Protocol

Encoding

Figure 6: NIST User Interface Reference Model

6 Alternative Window Systems

X is not the only window system, and competition from other window systems remains a barrier
to application program portability. Most of these competing windowing systems are proprietary
which precludes their replacing X. Principal reasons for X's popularity are that X is not proprietary,
M.I.T. encourages porting X to different hosts, and the widespread desire for application portability.
The Apple Macintosh window system might be a good candidate for a standard window system,
but Apple has made it clear that it intends to keep its software proprietary. Sun Microsystem's
Network Extensible Window System NeWS came too late to compete with X, and Sun's window
system now supports both X and NWS.

The most serious competitor might be IBM's Presentation Manager. The large OS/2 market makes
Presentation Manager a desirable window system since a large application base exists for PCs which
vendors would like to port to other hosts. IBM is moving to make Presentation Manager a window

interface standard [Hanner 88]. Both X and Presentation Manager are moving into each others

domain. Work is underway in various companies to put X on PCs. Currently, performance problems

and memory consumption are a problem in running X on PC class machines. HP is attempting

to put Presentation Manager on top of X and permit both X and Presentation Manager to exist

simultaneously on a system.

X and Presentation Manager have strengths; X in the distributed UNIX environment and Presenta-

tion Manager its rich application program interface (API) and large market. Both have weaknesses;

X has many different toolkits, and Presentation Manager does not address a distributed environ-

ment. X does not yet address the large body of UNIX users using ASCII terminals, although Visual

Technology is developing an X terminal to address this market. See [Morris 89] for an extended

discussion. The standardization efforts by X Consortium, OSF, ANSI and IEEE may resolve the

9



variety of APIs currently on the market for X, but not soon. The use of the Presentation Manager
Style Guide by OSF may provide common "look and feel" between the two window systems. Over
time the two window systems may converge into a single window system or at least develop common
APIs which would solve the portability problems, but nothing can be expected soon, and no clear
movement is apparent to merge the two.

7 X and Ada

Most activity involving X is in the C community, but there is a small group of people working
on X Ada bindings or implementations. Science Applications International Corporation (SAIC),
in a STARS Foundation contract, produced public domain Ada bindings for Xlib and the Xr
toolkit, and is also working on an Xt Ada implementation. There exist some proprietary bindings
or implementations of Xt, but these are not well publicized or available for evaluation. Sanders
Associates is working on an Ada X server which they will consider adding to the public domain.
Work on an Ada version of X by the X Consortium has been proposed by its director Robert
Scheifler, but as yet no companies have shown enough interest to fund the work. In the ANSI and
IEEE communities there is only a small interest in Ada bindings. Both X3H3.6 and P1201 have
committed first to developing C bindings leaving work on Ada bindings for later. There are two
UIMSs that generate X code in Ada, TAE Plus and Chiron. Neither are product quality at this
point.

The STARS Q14 task has worked with the SAIC bindings to Xlib and Xr, and the zemainder of this
section presents observations and conclusions on the usefulness of these bindings, and suggestions
for future directions.

7.1 Ada Xlib Bindings

The SAIC Xlib bindings are by far the best of the two X bindings. The SAIC bindings are a shallow
interface to the X C code relying on direct calls to the C functions. The Unisys STARS Standard
Interfaces task found a few problems in the SAIC implementation, but none serious and all were
easily corrected. Missing from the SAIC bindings are a few Xlib functions which require procedure
variables as parameters to function calls. Most of the missing Xlib functions permit applications to
dynamically assign protocol error handling routines by passing procedure variables as parameters
to functions. Ada does not directly support procedure variables, but methods exist for supporting
the functionality [Lamb 83]. However, these mechanisms would not work in a shallow interface
implementation.

A shortcoming in the Xlib bindings is the representation of event types as enumerated types. In
the C version the events are represented as integers with a large block of consecutive integers,
beginning with zero, reserved by the X Consortium for future use. X was designed to be easily
extensible, but by using enumerated types for event types, adding new events is nontrivial. An Ada
application could not create a new event type without modifying the the Xlib bindings. To abide
by the X Consortium conventions would mean adding a large number, thousands, of unused event
types to ensure the position in the enumerated type declaration matches the event numbers used in
the C code. The Xr toolkit actually has a new event type, and rather than alter the types in Xlib,

10



new routines for reading the event queue are added to Xr, but the Ada Xlib functions to read the
event queue can not handle events with this new event type. Enumeration types for events limit
the extensibility of X, an important feature of X.

Otherwise, the SAIC bindings are a good starting point for an Ada API to the X protocol. The
ANSI X3H3.6 work on Xlib Ada bindings will use the SAIC bindings as a starting point for its
standards work, and by adding the missing functionality and correcting the event typing problem,
a good Xlib binding will be available to Ada applications.

7.2 Ada Xr Bindings

The Ada Xr bindings, also written by SAIC under their STARS Foundation contract, are also a
shallow interface relying on direct calls to the HP Xr C code, but unlike the Ada Xlib bindings are
much less mature. There are many implementation errors; most not difficult to fix. Testing seems to
have been minimal since many of the bugs render a particular function completely unusable. With
some perseverance a reasonable application can be prototyped. The current version is certainly
not of production quality. Honeywell is currently doing a thorough testing and debugging of the
code, and once that is completed a more usable version should be available in the public domain.
Even with the Honeywell work, Ada Xr has serious problems. Firstly, one important feature of
C Xr is missing. Xr offers the ability to create window handlers and menu handlers which are
passed as procedure variables to the C Xr code. As in Xlib, features requiring procedure variables
are omitted. Unlike Xlib, though, this feature is important to Xr. Without these event handling
functions, the user interface is more deeply embedded into the application code, thus reducing code
portability and reusability. This is particularly inconvenient for menu handling.

A second problem is the difficulty extending Xr. An important feature of the C implementation
is the ease of adding new field editors. This is made difficult in the Ada binding by the use of
enumeration types to identify field editors and variant records for the field editors data structures.
To add a new field editor requires modifying routines in the Ada Xr intrinsics to handle new field
editors. This means an application programmer must know how to modify and recompile the Ada
Xr bindings, which is unnecessary in C.

The remaining problems are more fundamental problems with the Xr toolkit rather than Ada

specific problems, but these are nonetheless important in considering Xr for Ada applications.
Firstly, Xr relies on the application's use of Xlib calls for some window management functions,
whereas in Xt, Xlib is more transparent to the application developer. Second, the field editors have
built in "look and feel". Even menus have a well-defined "look and feel" with few options. The Xr

"look and feel" is fine if it agrees with the desired "look and feel" for the application, but if not,
field editors written in C must be modified or be completely rewritten which becomes a problem

in Ada because of the lack of extensibility. This is a serious obstacle in creating domain-tailored
user interfaces.

Finally, and perhaps most importantly, Xr is a dead end. The X community has chosen Xt as

the intrinsics for building toolkits. Beyond the debugging effort at Honeywell, there is no one to

support or extend Xr. At an Ada X "birds-of-a-feather" session at the 1989 X Technical Conference,

the major complaint of Ada X application programmers was the lack of a focal point for Ada X

support. The standards community, including NIST, is writing standards based on Xt, and Ada

11



products based on Xr will not meet future standards. Better support can be expected by staying
in the mainstream of the X community. UIMSs are expected to be written to work on top of Xt,
not Xr, and these UIMSs will be capable of generating Ada or C as TAE Plus does. TAE Plus
currently works on top of Xr, but NASA expects to have an Xt based version in 1989, and support
for Xr will probably disappear after the Xt release.

7.3 Future Directions for X and Ada

The Ada community needs to move into the mainstream of the X community, and that means
moving in the Xt direction. Xr should be dropped as the Ada X toolkit, and a good Ada Xt
toolkit developed. Xt is an object oriented system, and neither C nor Ada support object oriented
programming. The design of Xt is based upon certain C language features such as procedure
variables and weak type checking. Ada does not have these features, so an Ada implementation
must find ways to provide the same functionality of Xt as the C version. Implementing the Xt
intrinsics in Ada raises a number of design issues which are discussed in detail in the Appendix to
this paper. An implementation is preferable to a binding because of difficulties in binding to the C
data structures in a portable way.

The Ada community needs to develop a single widget set; either build one from scratch, or, if a
standard widget set emerges from the X standardization efforts, use a standard widget set. For an
Ada implementation of the Xt intrinsics, the widgets must also be written in Ada, thus an existing C
widget set can not be used directly, but must be rewritten and kept up to date with the C versions.
Finally, active evaluation of UIMSs on top of X should be pursued as this will further promote
portability and reusability by separating further the user interface from application semantics. The
criteria for judging UIMSs should include:

" it should be built on X

" easy access to X from an application since many UIMSs don't provide all the functionality
necessary for all applications

" ease of use by programmers

" the ability to isolate application program semantics from presentation concerns

" the ability to define consistent interfaces across a wide class of tools

8 Conclusions

The X Window System is now the dominant window system in the bit-mapped graphirs worksta-
tion environment. X is beginning to move into the PC market and possibly the ASCII terminal
marketplace. X is the way to go for application portability, code reusability, and user interface
consistency. The proliferation of X toolkits stands in the way, but industry has recognized the ad-
vantages of a single window system and toolkit, and the cooperation shown in the X Consortium,
OSF and the Sun/AT&T agreement indicates the strength of the movement to a single, portable
X based user interface toolkit.

12



The Ada community can achieve many of its portability goals by leveraging the work being done
in C versions of X. The Ada community needs to develop an Xt intrinsics based version of X, and
develop, either from scratch or from C implementations, a single widget set for Ada applications.
Without a single widget set, portability and reusability will suffer. Of particular importance to
STARS is a consistent user interface among tools in the SEE. A single Ada Xt toolkit and widget
set can provide this consistency.

The Ada community must be prepared to incorporate the advances in UIMS technology as technol-
ogy appears. UIMSs should be built on top of X to ensure portability, and must provide additional
ease of use, reusable user interface components, and support consistent user interfaces across ap-
plications.

A An Ada/X Toolkit Interface

Clearly, Xt represents the most stable toolkit architecture, and is the beneficiary of de facto industry
and academic consensus on application interfaces to an X toolkit layer. As mentioned earlier, for
Ada to move into the mainstream of X interfaces, Xt must be considered as the basis for an Ada
toolkit.

There are many obstacles to creating an Ada/X interface based upon, or derived from, Xt. Al-
though it is claimed in [Swick 88] that Xt is "Portable across languages, computer architectures,
and operating systems", even a casual study of the Xt intrinsics interfaces (or even the interface
guidelines presented in [Swick 88]) will reveal that language independence has not been achieved.
The extent to which C language dependencies have been embedded in the current Xt implementa-
tion renders impractical (or impossible) the shallow binding approach from Ada to the C interfaces,
as was done by SAIC for Xrlib and Xlib.

A.1 A Language Independent Toolkit Architecture

The language sensitivity of the C Xt interfaces raises an important question: how can an Ada

toolkit interface be established which leverages design, implementation, and toolkit acceptance
which stems from the Xt de facto status? More succinctly, is it possible to have an Ada/X toolkit

based upon Xt?

The answer to this question depends upon the extent to which Xt exhibits an identifiable language-

independent architecture. It is notable that [McCormack 881 distinguishes between the Xt intrinsic

mechanism and the Xt architectural model; this is an apparent separation of implementation from

architecture. In our view, the Xt intrinsics are the implementation of the language independent Xt

architecture, and should be examined in an effort to understand and specify what this model is,

rather than form the direct basis for an Ada/X toolkit.

There is strong evidence to support this approach. Using the C intrinsics as an architectural

basis for an Ada/X toolkit would introduce additional (and extraneous) complexity in the form

of interface mapping of the strong Ada typing model, and the primitive (machine level) C typing

model. Also, the C intrinsics implement toolkit features which are provided as native features to

the Ada language. Both of these points are discussed in the following subsections.

13



A.2 Intrinsics Implementation of Language Features

One very interesting aspect of the- Xt model is that the toolkit intrinsics layer is in fact the ap-
plication program interface to the toolkit. That is, the intrinsics layer acts as an intermediary
for application requests to the widget set; the application does not directly communicate with the
widgets. From an Ada perspective, this seems a bit odd; consider what it would mean to create
an abstraction to represent an interface to another set of abstractions. More "natural" is the idea
that applications create instances of widgets, and make requests of these instances directly.

We can deduce reasons why Xt uses the intrinsics as the intermediary to widget objects. First, this
is the only way (in C) to provide a uniform int ice to the widget set. That is, assume widget
types Ti T2 and T3 all provide a common serv.,e. The interface to these services must provide
distinct entry names, since C does not support operator overloading. In C, this would result in
a tight coupling of application code to particular widget implementations, which would render
applications less portable. Second, the intermediary intrinsics facilitate the clean implementation
of inheritance in Xt; the alternative would be to require each widget implementation to provide
inheritance semantics, which would greatly increase the complexity of widget construction, and
simultaneously make any toolkit less robust. Although an Xt widget programmer is responsible for
specifying the inheritance hierarchy within the widget structure definition, the intrinsics actually
implement the inheritance functionality.

A.3 C Interface Typing Dependencies in Xt

The Xt interfaces are also very language dependent. This has implications not only on the form of
the interface, but also on the underlying implementation. That is, the projection of the C typing
model on the interface would greatly constrain possible Ada implementations based upon these
interfaces. There are many other instances of the projection of unchecked C programming onto the
Xt interfaces. Chapter 11 of [McCormack 88], Resource Management, is notable in this regard.

Resource management allows the intrinsics to present an interface to manage resource types defined
by widget programmers. Resources in Xt are named components of widgets, i.e., record fields
which are addressable by string name. Thus, the resource manager provides an interface to access
and manipulate fields of widgets of unknown types, whose fields are also of unknown types. To
provide such generality, the Xt resource manager interface presents raw pointer types, and provides
operations to perform tasks such as run-time resource type conversion.

At this time it is not clear whether this kind of interface will be necessary for an Ada/X toolkit,
or whether each widget type in Ada could be responsible for its own resource management while
still presenting a uniform interface. It is clear, however, that the Xt resource manager interface
poses significant obstacles for a clean Ada implementation (i.e., one that exhibits a strongly typed
interface).

A.4 Object Orientation: The Critical Challenge

The central theme of any Xt implementation is the provision of an object-oriented toolkit archi-
tecture. There is widespread consensus that object orientation is the appropriate window sys-
tem abstraction [Goldberg 83] [Palay 88] [Young 88]. The Xt implementation was hampered in

14



that C does not provide native language support for object oriented programming. It does, how-
ever, provide sufficient flexibility to implement the features required of object oriented languages
[Stroustrup 86], e.g., procedure objects and polymorphism. Procedure pointers provide a natural

mechanism for implementing method inheritance; type relaxation provides a natural mechanism for
implementing subclass polymorphism and resource inheritance.

For an Ada toolkit to provide equivalent functionality and extensibility to the Xt implementation,
it must exhibit (externally) the above mentioned object oriented features. Since Ada, like C, also
lacks native language features to support object oriented features, most notably inheritance, it is
clear that an Ada/X toolkit will also have to rely on some intrinsic layer. The key issue is whether
Ada provides the linguistic support (e.g., procedure objects) to implement this intrinsic layer while
still presenting a strongly typed toolkit interface.

A.4.1 Procedure Types in Ada

Ada does not support procedure types. This would appear to be a serious obstacle for implementing
method inheritance, and for dynamic (i.e. run-time) modification of widget behaviour. The lack
of procedure type in Ada was not an oversight in language design, but rather recognition that
the combination of a procedure types and block scoping would create serious program reliability
problems. The core of the problem is simply this: the scope of a procedure object must be identical
to the scope of the procedure the object references.

Assume the existence of a procedure type in Ada, and the pre-defined prefix operation "*" used
to activate the procedure object (as in C). Figure 7 illustrates in a simple setting the problem
alluded to above. In this example, nested-object no longer exists at the time the procedure is
indirectly executed. C does not suffer from this problem, since in C all functions are defined at
lexical level 0. The point of this example is to highlight that any Ada callback implementation which
makes use of procedure pointers will be unsafe1 . Although Ada provides an avenue for getting the

address of a procedure, and thus a (non-portable) means of having procedure objects, the above

scoping problems are more serious than portability concerns, and argue strongly for an alternative

mechanism for introducing procedure types.

One observation is that Ada does provide a task type, which could provide a basis for simulating

procedure types. One implementation is discussed in [Lamb 83]. The problem we see with the

tasking approach in general is that it is not possible to provide alternate task bodies for a particular

task type, and thus each simulated procedure would represent a distinct type which has only one

instance. We have experimented with unchecked conversion among task types to gain the effect

of alternative task bodies for the same task entry; however, we feel this solution is inherently

non-portable.

Fortunately, there is a safe procedure pointer mechanism available in Ada which makes use of Ada

generics. Appendix B of this report includes the complete package specification, body, and sample

application, of this mechanism. This code has been tested under two different compilers, and

should be portable. The following points should be considered when examining the specification in

appendix B:

1This is not to imply that a safe procedure type can not be designed into the Ada language

15



with text.jo; use text.io;
procedure outtermost is

global-proc: procedure;

procedure inner.1 is

nested.object: integer:- 999;

procedure inner_2 is
begin

put (nested-obj ectl'image);
end inner_2;

begin
global.proc :,, inner_2;

end inner_ 1;

begin
*global-proc; -- nested object does not exist in this context

end outtermost;

Figure 7: Scoping Problems with Procedure Types

16



" This implementation is more general than the C procedure pointer mechanism, since the Ada
version supports nested functions, as well as arbitrary entry points into the search path.

" The number of generic callbacks per instantiation can be varied to optimize for application
needs.

" The parameter types for the callbacks can also be made generic.

" The callback package can be easily generated to provide for callback procedures of arbitrary
parameter profiles.

" The callback implementation is free to use other (less portable but more efficient) mechanisms,
e.g., the 'address solution.

A.4.2 Inheritance

The author admits to having no ready-made solution to propose for simulating inheritance in Ada
(as we had a proposal for simulating procedure types). Examination of Xt provides valuable hints
to one possible implementation approach, although it is debatable whether the same method would
be appropriate for an Ada/X toolkit.

One point to note is that the Xt intrinsics do not wholly encapsulate inheritance; the widget
programmer must write his widgets under an Xt discipline which will render the format of widget
types (their type representation) recognizable by the intrinsics. Xt maintains a class hierarchy,
which roughly equates to a type hierarchy. The built-in class WidgetClass is (directly or indirectly)
a parent class of all Xt classes.

WidgetClass is known to the Xt implementation and defines common properties exhibited by all
Xt widgets. Xt also has a built-in type which defines common properties exhibited by all widget
instances, called Widget. The WidgetClass/Widget model corresponds to the Smalltalk model of
class methods and variables being distinct from instance methods and variables.

The widget programmer who wishes to add a new widget class to Xt inserts, at the beginning of the
new widget's class definition structure, the structure which defines the widget's superclass. Thus
the superclass properties, or rather placeholders for these properties, are manually "compiled" into
the new widget class structure.

Widget instances also contain instance data which is unique to the instance of a class. The widget
programmer defines the new instance type in a similar way, by manually inserting the superclass
instance structure into the new widget instance type definition. Figure 8 illustrates this structural
subclassing method.

Because of this widget programming discipline, the intrinsics can perform the equivalent of an
unchecked type conversion from arbitrary widget types to the base (recognized) types, Widget and
WidgetClass. Thus, even though the intrinsics don't know about widget sets beyond the built-in
sets, it knows how to access the relevant data fields of all widgets.

The implications of this kind of implementation on an Ada/X toolkit are unclear, although some
problems are evident. First, this approach requires the intrinsics to know about representation

17



/* This structure defines the components of the core class */

typedef struct (
WidgetClass superclass;
String class_name;
/* other common fields */

} CoreClassPart;

/* This structure defines the components of a subclass of the core class */

typedef struct {
XtGeometryHandler geometry.handler;

XtWidgetProc change.managed;
/* other composite widget fields */

} CompositeClassPart;

/* This is the actual subclass definition, which inserts the core class */
/* components before the subclass components. C/

typedef struct {
CoreClassPart core.class;
CompositeClassPart composite.class;

} CompositeClassRec, *CompositeWidgetClass;

Figure 8: Xt Structural Inheritance

18



details of widgets. This is a problem not so much because it violates the principle of information
hiding as it is because it depends upon a compiler implementation choosing a physical record
layout which agrees with the programmer's specified logical record layout. Of course, the widget
programmer could resort to Ada representation clauses, although that too introduces portability
problems [Pollack 88].

Although we propose no concrete design at this time for implementing inheritance, it appears that
there are three broad avenues which should be investigated as part of an Ada/X toolkit design.
These are briefly described in the following sections.

Weakly Typed Intrinsics Interfaces

This approach would project anonymous types onto the intrinsics interface, as does the Xt imple-
mentation. That is, the interface would present formal types such as system.address. This is an
extreme approach, and one which is not likely to be recommended. The only arguments in favor
of this approach would be a) necessity, if it is found that no strongly typed interface can at the
same time provide toolkit extensibility, or b) that only machine-generate-d code would use these
interfaces (e.g., UIMS-generated source).

Two points should be noted concerning the weakly-typed interface approach. First, the onus would
be placed upon the application programmer to perform unchecked type conversion, or rely on the
'address attribute, to communicate with the toolkit. Second, and more importantly, this approach
would argue strongly in favor of creating a pragma interface binding to Xt, rather than an Ada
toolkit implementation. If the toolkit needs to exhibit weakly typed interfaces in order to achieve
extensibility, then mapping Ada interfaces to pre-existing (and tested) C interfaces could be the
most economical solution.

Weakly and Strongly Typed Intrinsics Interfaces

This approach would distinguish two classes of intrinsics interfaces: those used by the application
programmer, and those used by the widget programmer. The assumption is that the application
programmer is not concerned with the implementation of inheritance or other toolkit extensibility
functions, and so could (possibly) be insulated from these interfaces. On the other hand, the widget
programmer would have to make use of such resources in order to have access to e.g., the class
hierarchy which implements inheritance.

This approach also works under the assumption that strict typirc5 works to the contrary of toolkit
extensibility; if this assumption proves too pessimistic, the set of weakly-typed interfaces could be
the empty set. Thus, this approach is not to be distinguished from an approach which provides a
strongly typed intrinsics interface, since that would be the most desirable goal.

Program Generation Approaches

Perhaps the most extreme solution is to implement the Ada/X toolkit by means of program gener-
ators. This approach is based upon the observation that the Xt intrinsics exhibit a generalized type

19



interface because the number and types of widgets and resources being, managed are not known to
the toolkit. That is, a strongly typed toolkit implementation could be constructed, but only at the
expense of toolkit extensibility. However, a generator could be constructed which parameterizes
this information; the toolkit interface and implementation could be generated from a specification
of toolkit widgets.

This approach would depart from the Xt model, which distinguishes the intrinsics from the widget
set. In the generation approach, the intrinsics would be derived from the widget set. However, it is
not clear that this is a significant objection to the generation approach. In any event, widget pro-
grammers are considered as distinct from application programmers, and so the distinction between
intrinsics and widget interfaces may be contrived.

A.5 Conclusions

The Xt toolkit provides the best basis for building an Ada/X toolkit which will exhibit the de-
sired functionality and flexibility needed for domain tailorable STARS human interfaces, and will
facilitate industry acceptance of the Ada/X toolkit.

Xt also presents difficult engineering problems. Most significant is the lack of a concise defini-
tion of the language independent Xt architecture. This architecture, although distinguished in
[McCormack 88] from the Xt intrinsics, is nonetheless defined in terms of the Xt intrinsics. Un-
fortunately, the Xt intrinsics project an implementation, not an architecture, and exhibit weakly
typed interfaces which would be inappropriate to mimic in Ada.

Although much work needs to be done to specify an Ada/X architecture derived from Xt, one
important characteristic is clear: Ada/X must provide an object-oriented model similar to the
model provided by Xt. Although we specified a mechanism for safely implementing procedure
objects in the Ada/X toolkit, fundamental questions remain concerning the implementation of
inheritance.

The first step in constructing an Ada/X toolkit must be specification of a language independent
toolkit architecture. This architecture will be implemented by a set of language/implementation
specific toolkit intrinsics. For the Ada/X toolkit, the first objective ought to be specification of

clean, strongly typed intrinsic interfaces. If strong typing needs to be relaxed to provide toolkit
extensibility, an attempt should be made to isolate the type relaxation to the implementation, not

interfaces. Should this also prove impractical, then the weakly-typed interfaces should be isolated

to interfaces used by widget programmers, and not made visible to application programmers.

Only as a last resort should alternative approaches, such as pervasive weak typing or toolkit gen-

eration approaches be examined. An important research result of the Ada/X toolkit work will be
to establish the relationship between strong typing and the implementation of extensible systems.

20



B Complete Callback Implementation

B.1 Callback Mechanism Specification

package callback-mechanism is

CALLBACKCALLERROR: exception;
CALLBACKINSTALLERROR: exception;
CALLBACKRANGEERROR: exception;

MAXCALLBACKS: constant:- 1024;
NUM.CALLBACKS: constant:- 3;

subtype callback.id.range is natural range 0 .. MAXCALLBACKS;

-- package callback.ids provides an ADT for callback identifier types
-- not limited private so that package callbacks can assign default
-- null callback identifiers if no actual callback procedure is specified
package callback-ids is

type callback.id-type is private;
null-id: constant callbackid.type;

function to.callback.id.range(id: callback-id-type)
return callbackid-range;

private
function next-callback-id return callback-id-range;
type callback.id-type is record

the-callback.id: callbackid-range:= next-callback-id;
end record;
null-id: constant callbackid.type:=

(the.callback.id -> callbackidrange'first);
end callback-ids;

use callback-ids;

-- the default procedures will never actually be called
procedure default.next.callback(id: callbackidtype; s: string);
procedure default-callback(s: string);

generic
-- This implementation supports three callbacks per instantiation.
-- If the user has 4 actual procedures, two instantiations are needed.

with procedure cbl(s: string) is default-callback;
idl : in callback-.idtype:- null-id;

with procedure cb2(s: string) is defaultcallback;

21



id2 : in callback-id.type:= null-id;

with procedure cb3(s: string) is default-callback;
id3 : in callback-id.type:= null-id;

-- next.callback chains callback instantiations, giving the effect
-- of a linked list of package instantiations!
with procedure next-callback(id: callbackid-type; s: string)

is default-next-call-back;

package callbacks is
procedure callback (id : callbackid-type; s: string);

end callbacks;

end callback.mechanism;

22



B.2 Callback Mechanism Body

with system; use system;
package body callback-.mechanism is

type callback-mapped-.id is
range callback-.id-rangefirst callback-.id-.range'last *NUMCALLEACKS;

uximapped-.id: constant callback-.mapped-id:- callback..mappedidfirst;

callback.id-map :array(callback-.id.range) of callback-.mapped..id:w
(others -> unmapped-.id);

starting-.at: callback..mapped..id:u callback-.mapped-.id'first + 1;
next.mappd-.id: callback.mapped-.id :u start ing-.at;

package body callback.ids in

nezt-id: callback.id.range:. callback..id-.range'first + 1;

-- return a unique callback id
function next-.callback..id return callback.id-.range is

i: callback..id..range:n next..id;
begin

next..id:u next-id * 1;
return i;

exception
when constraint-.error =>

raise CALLBACK-.RANGE-.ERROR;
end next..callback-.id;

-- select the callback id from the callback object
function to..callback-.id-.range (id: callback. id-.type)

return callback-.id-.range is
begin

return id .the..callback-.id;
end to..callback-.id-.range;

end callback-.ids;

-- these procedures should never be called, so raise exception
procedure default.next..call-back(id: callback..id-.type; a: string) is
begin

raise CALLBACK.CALL.ERROR;
end;
procedure default..callback(s: string) is

23



begin
raise CALLBACKCALLERROR;

end default.callback;

package body callbacks is
-- each instantiation of callbacks has a distinct id range
low.range, high-range: callback-mapped-id:= callbackmappedid'last;

procedure callback (id : callback-id-type; s: string) is
-- subtype assignment allows use of case statement
subtype callback-range is callback-mapped-id range 1 .. NUMCALLBACKS;
mapped.id: callback-mapped-id:=

callback.idmap(to.callback.id-range(id));
index: callback.range;

begin
if mapped.id in low-range .. high-range then

index:- mapped.id - low.range + 1;
case index is

when 1 => cb1(s); -- call the actual callback
when 2 => cb2(8);
when 3 => cb3(s);

end case;
else -- in the range of a previous instantiation

next-callback(id, s);

end if;
end callback;

begin -- initialize

low.range:= starting-at;
high.range:= low-range + NUNCALLBACKS - 1;
starting-at:= high-range + 1;

-- do this if .. then code for each formal callback

if cbl'address /= default.callback'address then
if idl /- null-id then

if callback-idmap(to-callback.id.range(idl)) 1= unmapped-id then
raise CALLBACK.INSTALL.ERROR; -- valid procedure, duplicate id

else
callback.id-map(to-callback_.d-range(id1)):= next-mapped-id;

end if;
else

raise CALLBACKINSTALL.ERROR; -- valid procedure, null id
end if;

end if;
next.mapped.id:= next.mapped.id + 1;

if cb2'address /a default.callback'address then

24



if id2 /= null-id then
if callback-.id-.map(to-.callback-id-.razge(id2)) /- unmapped-.id then

raise CALLBACK-.INSTALL_.ERROR; -- valid procedure, duplicate id
else

callback-id-.map(to-.callback-.id-.range(id2)) := next.mapped-.id;
end if;

else
raise CALLBACK-NSTALL-ERROR; -- valid procedure, null id

end if;
end if;
next-.mapped-.id:= next-.mapped-.id + 1;

if cb3'address /a default-callback'address then
if id3 /z null-id then

if callback-.id-.map (to-.callback-.id-.range (id3)) /a unmapped-.id then
raise CALLBACK-.INSTALL_.ERROR; -- valid procedure, duplicate id

else
callback-.id-.map(to-callback-.id-range(id3)) :- next.mapped-.id;

end it;
else

raise CALLBACK.INSTALL..ERROR; -- valid procedure, null id
end if;

end if;
next-.mapped-.id:- next-.mapped-.id + 1;

end callbacks;

end callback-.mechanism;

25



B.3 Callback Mechanism Use

with callback-mechanism; use callback-mechanism;
with text-io; use text-io;
procedure test-callbackmechanism is

use callback.ids;

procedure p(s: string);
procedure q(s: string);

pl: callbackidtype; -- pi and q1 now have valid callback ids
qI: callback-id-type;

-- in p-callbacks, cb2 and cb3 are "default" callbacks
package p.callbacks is new callbacks(cbi => p, idl => pl);

-- q-callbacks uses p-callbacks callback routine to chain instantiations
-- procedure p and q could have both been installed in a single
-- instantiation, but we're demonstrating instantiation chaining.
package qcallbacks is new callbacks(

cbl => q,
idl => qI,
next-callback -> p-callbacks.callback);

use q-callbacks; -- make the last instantiation directly visible

-- procedures p and q do different things
procedure p(s: string) is
begin

put-line("P:" & 8);

end p;
procedure q(s: string) is
begin

put.line("Q:" & s);
end q;

begin
callback(p1, "hello world");
callback(ql, "hello world");

end test-callback.mechanism;

26



References

[Burleigh 88] Burleigh, David. Programming The Xt Toolkit. 1988. Xhibition'88 X Toolkit
Tutorial.

[Durand 89] Durand, Jennifer-Ann M., Young, Michal, and Troup, Dennis B. A Tool
Builder's Guide to Chiron (Version 0.1, Preliminary). 1989. Arcadia Docu-
ment UCI-88-18.

[Goldberg 83] Goldberg, Adele and Robson, David. Smalltalk-80 The Language and Its
Implementation. Addison-Wesley, 1983.

[Hanner 88] Hanner, Mark Allen. Gambling on Window Systems. UNIX Review 6:50-59,
December 1988.

[HewlettPackard 88) Hewlett-Packard. Programming With the Xrlib User Interface Toolbox. 1988.

[Hinckley 89] Hinckley, Kee. OSF/MOTIF. 1989. Presentation at the 1989 X Technical
Conference.

[Institute 88] Institute, Software Engineering. An Introduction ot the Serpent System.
1988.

[Lamb 83] Lamb, David A. and Hilfinger, Paul N. Simulation of Procedure Variables
Using Ada Tasks. IEEE Transactions On Software Engineering SE-9:13-15,
January 1983.

[Lowgren 88] L6wgren, Jonas. History, State and Future of User Interface Management
Systems. SIGCHI Bulletin 20:33-44, July 1988.

[McCormack 88] McCormack, Joel, Asente, Paul, and Swick, Ralph R. X Toolkit Intrinsics -
C Language X Interface. 1988. X Version 11, Release 2.

[Morris 89] Morris, Robert R. and Brooks, William E. A Graphic Comparison. PC Tech
Journal 7:106-118, February 1989.

[Myers 88] Myers, Brad A. Tools for Creating User Interfaces: An Introduction and Sur-
vey. Technical Report CMU-CS-88-107, Carnegie Mellon University, January
1988.

[NASA 88] NASA. Introduction to TAE PLUS. 1988. Century Computing, Incorpo-
rated, 88-TAE-INTRO1B.

[OReilly 88] O'Reilly and Associates. Xlib Programming Manual for Version 11 Release 2
of The X Window System Volume One. 1988.

[Palay 88] Palay, Andrew J., Hansen, Fred, Kazar, Mike, Sherman, Mark, Wadlow,
Maria, Neuendorffer, Thomas, Stern, Zalman, Bader, Miles, and Peter, Thom.
The Andrew Toolkit - An Overview. In Proceedings USENIX Technical Con-
ference. Winter 1988.

[Pollack 88] Pollack, B. and Campbell, D. The Suitability of Ada for Communcations
Protocols. In Sixth National Conference on Ada Technology, pages 170-181.
March 1988.

27



[Scheifler 86] Scheifler, Robert W. and Gettys, Jim. The X Window System. ACM Trans-
actions on Graphics 5:79-109, April 1986.

[Stroustrup 86] Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley,
1986.

[Swick 88] Swick, Ralph R. and Weissman, Terry. X Toolkit Widgets - C Language X
Interface. 1988. X Version 11, Release 2.

[Young 88] Young, Michal, Taylor, Richard N., and Troup, Dennis B. Software Envi-
ronment Architecture and User Interface Facilities. IEEE Transactions on
Software Engineering 14:697-708, June 1988.

28


